GEFCOM 2014 - Probabilistic Electricity Price Forecasting

نویسندگان

  • Gergo Barta
  • Gyula Borbely
  • Gabor Nagy
  • Sandor Kazi
  • Tamás Henk
چکیده

Energy price forecasting is a relevant yet hard task in the field of multi-step time series forecasting. In this paper we compare a wellknown and established method, ARMA with exogenous variables with a relatively new technique Gradient Boosting Regression. The method was tested on data from Global Energy Forecasting Competition 2014 with a year long rolling window forecast. The results from the experiment reveal that a multi-model approach is significantly better performing in terms of error metrics. Gradient Boosting can deal with seasonality and autocorrelation out-of-the box and achieve lower rate of normalized mean absolute error on real-world data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Model for Gefcom2014 Probabilistic Electricity Price Forecasting a Hybrid Model for Gefcom2014 Probabilistic Electricity Price Forecasting

This paper provides detailed information on Team Poland’s approach in the electricity price forecasting track of GEFCom2014. A new hybrid model is proposed, consisting of four major blocks: point forecasting, pre-filtering, quantile regression modeling and post-processing. This universal model structure enables independent development of a single block, without affecting performance of the rema...

متن کامل

Dynamic Hybrid Model for Short-Term Electricity Price Forecasting

Accurate forecasting tools are essential in the operation of electric power systems, especially in deregulated electricity markets. Electricity price forecasting is necessary for all market participants to optimize their portfolios. In this paper we propose a hybrid method approach for short-term hourly electricity price forecasting. The paper combines statistical techniques for pre-processing ...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Comparative Analysis of Short-Term Price Forecasting Models: Iran Electricity Market

As the electricity industry has changed and became more competitive, the electricity price forecasting has become more important. Investors need to estimate future prices in order to take proper strategy to maintain their market share and to maximize their profits. In the economic paradigm, this goal is pursued using econometric models. The validity of these models is judged by their forecastin...

متن کامل

Experimental study on electricity price forecasting using neural network

It is very important to forecast electricity price in a deregulated electricity market for choosing the bidding strategy, and it is the most important signal for other players. It engulfs information for both customers and producers in order to maximize their profit. Thus, choosing the best method of price forecasting is a crucial task to have the most accurate forecast. In this paper the price...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.06972  شماره 

صفحات  -

تاریخ انتشار 2015